Evaluating and Improving Reproducibility in Machine Learning


Reproducibility in machine learning means you can run the same code on the same data and get the same results. While this may seem relatively straightforward, there are plenty of potential pitfalls. In this talk, we’ll discuss a scale for evaluating the reproduciblity of a machine learning project and how to make sure that your own work is easy to reproduce. While this talk is focused on researchers (it’s based on a paper I presented at an ICML workshop), the tips and tricks should apply to anyone who does exploratory data analysis or machine learning generally.