
Testing, Validation and 
Evaluation: 

How Do You Know if Your NLP System 
Actually Works?

Dr. Rachael Tatman
Senior Developer Advocate, Rasa



Hi, my name is Rachael 
and...

I work on chatbots







Systems people hate 
using are a failure of 
engineering.



How can you build, 
deploy and maintain 
NLP systems that 
work?



1. Testing
2. Validation
3. Evaluation



Testing
- For stable behaviour

- Unit and integration tests

- Chatbot example: fixed 
conversations that should 
always have the exact 
same outcome



Validation

- Key to avoiding over- and 
underfitting 

- Evaluates model performance 
when presented with novel data

- Train/test split is just the *first* 
stage of validation

scikit-learn developers, BSD <http://opensource.org/licenses/bsd-license.php>, via Wikimedia Commons



Validation

- In any application where you expect 
changes over time (hint; all systems 
interacting with language) you'll need to 
revalidate with timely data

- Validation data should match the 
distribution of data your systems sees in 
production (which, luckily, you have)



● Heather is a Principal 
Machine Learning 
Engineer @ T-Mobile

● Her team's assistant 
serves more than 2 million 
insights/day

● A third of users choose to 
use the chatbot instead 
of talking to a person



Evaluation

- You can have 100% test coverage & the world's best cross-validation... but if 
your system isn't effectively solving a problem then it doesn't matter

- What does success look like?
- Your company saves money 
- User satisfaction is high
- We save user's time (<- #1 factor that makes people actually use a 

chatbot*)
- This is extremely system dependent but should be the first thing you figure 

out when you scope your project

*Brandtzaeg, P. B., & Følstad, A. (2017, November). 
Why people use chatbots. In International conference 
on internet science (pp. 377-392). Springer, Cham.



OK, cool, that's all very 
theoretical, what does 
it actually look like in 
practice?



Conversation-Driven 
Development (CDD)



A chatbot example:
Conversation Driven Development

- Human-labeller-in-the-deployment-loop

- You have to look at your data

- CICD but including data labelling & retraining

- I'm not kidding: you have to look at your data



Conversation-Driven Development is made up of six actions
ABOUT CDD

share fixtrackreview annotate test



Users will always surprise you.

So get some test users to try your prototype as early 
as possible.

Shipping without having a bunch of test 
users has never worked. Your project 
wonʼt be the exception.

Share



Review

At every stage of a project, it is worth reading what users are 
saying.

Avoid getting caught up in metrics right away. Conversations 
are valuable data.



Annotate

Using a script to generate 
synthetic training data

Turning real messages into 
training examples



Test

Professional teams donʼt ship applications without 
tests.

Use whole conversations as end-to-end tests 

Run them on a continuous integration (CI) server.



PrototypeTrack

Use proxy measures to track which conversations are 
successful and which ones failed.

ʻNegativeʼ signals are useful too, e.g. users not getting back in 
touch with support. 



PrototypeFix

Study conversations that went smoothly and ones that failed.

Successful conversations can become new tests 🎉

Fix issues by annotating more data and/or fixing your code 🔧



Conversation-Driven Development is made up of six actions
ABOUT CDD

share fixtrackreview annotate test

You're going to have a lot of iteration & 
improvement, both before and after launch



1. Testing
2. Validation
3. Evaluation



Thanks! Questions?

@rctatman


