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Rules vs. Neural Methods

Neural methods are:

- Flexible
- Good at handling unseen data
- Probabilistic
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South Korean Al chatbot pulled from
Facebook after hate speech towards
minorities

Lee Luda, built to emulate a 20-year-old Korean university student,
engaged in homophobic slurs on social media
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A Lee Luda, a Korean artificial intelligence chatbot, has been pulled after becoming abusive and engaging in hate

speech on Facebook. Photograph: Scatter Lab

https://www.theguardian.com/world/2021/jan/14/time-to-properl
y-socialise-hate-speech-ai-chatbot-pulled-from-facebook
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Rules vs. Neural Methods

Neural methods are:

- Flexible
- Good at handling unseen data
- Probabilistic

But also:

- Unpredictable (wouldn’t recommend them
for generating text to serve to users)

- Require a lot of training data (really
English-centric :( )
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Fig. 6. Comparison of Rasa NLU pipelines.

Enhancing Rasa NLU model for Vietnamese
chatbot Nguyen (Trang & Shcherbakov, 2020)
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Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Extracting Training Data from Large
Language Models (Carlini et al 2021)

Occurrences Memorized?
URL (trimmed) Docs Total XL M S

/v/M51y/milo_evacua... 1 359 v B
/r/Mzin/hi_my_name... 1 113 74
/v/M7ne/for_all_yo... 1 76 1h
/v/HEB5mj/fake_news_... 1 2
/r/I5wn/reddit_admi... 1 64
/r/Mlp8/26_evening... 1 56
/v/Ma/s0_pizzagat... 1 51
1
1
1
1
1
1

/r/Bubf/late_night... 51
/r/eta/make_christ... 35
/r/I6ev/its_officia... 33
/t//MB3c7/scott_adams... 17
/r/M20/because_his... 17
/r/tu3/armynavy_ga... 8
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Table 4: We show snippets of Reddit URLs that appear a
varying number of times in a single training document. We
condition GPT-2 XL, Medium, or Small on a prompt that
contains the beginning of a Reddit URL and report a v* if
the corresponding URL was generated verbatim in the first
10,000 generations. We report a /2 if the URL is generated by
providing GPT-2 with the first 6 characters of the URL and
then running beam search.
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Rules vs. Neural Methods

Neural methods are:

- Flexible
- Good at handling unseen data
- Probabilistic
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Rule based methods are:

- Reliable

- Easy to interpret

- Require no training data
- Very predictable

But also:

- Very narrowly defined

- Complex systems of rules are difficult to
understand/update/maintain

- Don’t adapt to unseen situations

- Not getting as much press coverage



DIALOGUE MANAGEMENT DEEP DIVE
The Importance of Context

Shall I also update

Context: Update B||||ng Info your credit card Previous Action
details?

Which one do you
have on file at the
moment?

Dialogue Response We currently charge
Management Generator this credit card...
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Intent Action
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vector=1(0, 11, 26, ...,1) vector=(4,170, 90, ...,5)
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NLU DEEP DIVE

DIETClassifier: Combined Intent Classification & Entity Extraction

DIETClassifier

Intent

Entities
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¥ ;

“My new address is 222 Broadway NYC.”

— enter_address

address: 222 broadway nyc



NLU DEEP DIVE

DIET: Intent Classification & Entity Extraction
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Core Deep Dive: Policies

Machine Learning Based Policies

These policies should be used in conjunction with rule-based policies

® KerasPolicy: Uses a standard LSTM to predict the next action

o Learns the patterns of your stories
o Good for handling stories that don’t exactly match your training data

® TED Policy: Uses Attention to Handle Uncooperative Dialogue
o Requires fewer story examples of uncooperative user dialogue
m e.g. users who go off on tangents instead of providing the requested information
o Effectively “ignores” irrelevant parts of the dialogue
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DIALOGUE MANAGEMENT DEEP DIVE
Rules

Rules are used to train the "RulePolicy’

e ‘conditions that must be met for the
rule to apply

® ‘wait for user input: false  atthe
end of a rule prevents automatically
appending ‘action listen  and allows
further action prediction

rules:
- rule: greet
steps:
- intent: greet
- action: utter greet

- rule: greet by name
conditions:
- slot was set:
- name: “something”
steps:
- intent: greet
- action: utter greet name

- rule: faq interruption
steps:
- intent: faqg
- action: utter faq
Wait for user input: false




Sure, transformers are cool... but have you tried rules?

What’s next for NLP?

Both rules and neural methods have a place
in Conversational Al
- Pure neural methods are too
unpredictable for high stakes
applications & training data isn’t always
available
- Pure rule-based systems are too exact
to cover all situations, neural methods
are more extensible
(Partially) rule based systems may not be
fashionable in research but they aren’t going
anywhere in commercial applications

@rctatman




Thanks! Questions?



