
AI = Your Data
(And what that means for you
as you build a virtual assistant)

Why do you bother
working on chatbots?

Why do you bother
working on chatbots?

Subtext: I think most conversational

AI projects are bad

What makes a bad
Conversational AI project?

It doesn't help people do
what they need to do.

How do you know what
people need to do?

● You make an educated guess
● You ask them (UX research)
● They tell you (You look at data)

How do you know what people need to do?

● You make an educated guess
○ Complete top-down design (state machines, dialog trees) can

be a good approach, but they're inflexible
● You ask them (UX research)
● They tell you (You look at data)

How do you know what
people need to do?

● You make an educated guess
● ✨You ask them (UX research)✨

○ Not covered today but 100%
do it if you can

● They tell you (You look at data)

How do you know what people need to do?

● You make an educated guess
● You ask them (UX research)
● They tell you (You look at data)

○ More flexible
○ But don't assume that all you need is

more user-generated data!

https://www.theguardian.com/world/2021/jan/14/time-to-properl
y-socialise-hate-speech-ai-chatbot-pulled-from-facebook

How do you know what people need to do?

● You make an educated guess
● You ask them (UX research)
● They tell you (You look at data)

○ More flexible
○ But don't assume that all you need is

more user-generated data!
○ Happy medium:

■ your system learns from data
■ you provide additional structure

and organization
https://www.theguardian.com/world/2021/jan/14/time-to-properl
y-socialise-hate-speech-ai-chatbot-pulled-from-facebook

What is “data” in conversational AI?

● The text data use to pretrain any models or
features you're using (e.g. language models,
word embeddings, etc.)

● User-generated text
● Patterns of conversations
● Examples:

○ Customer support logs (assuming data
collection & reuse is covered in your
privacy policy)

Two different assistants can have more
or less the same underlying ML code.
(That’s what makes building a
conversational AI framework possible!)

What makes your assistant work for
you and your users is your data & how
you structure it.

● Curate = decide what data
to use as you train &
retrain your assistant

● Annotate = apply (or
correct) labels for
individual pieces of data

● Intents
○ If you already

have data
○ If you don't

● Stories
● Checking if it works

Intent = something a
user wants to do

Intent = something a
user wants to do

Quick test: is this a VERB

(inform, book_trip, confirm)?

If you have data

● Modified content analysis:
○ Go through data (or sample) by hand and assign each datapoint to a

group
○ If no existing group fits, add a new one
○ At given intervals, go through your groups and combine or seperate

them as needed
○ Start with 2-3 passes through your dataset

● Can't you just automate this?
○ Maaaybe, but I wouldn't recommend it: no guarantee clusters will

map well to user needs

(Even) If you don't have data

● Start with the most common intent
○ Most people want to do the same thing
○ Use the experts in your institution (e.g.

support staff)
● Start with the smallest possible number of

intents (that cover your core use case)
● Everything else goes in an out of scope intent

○ If your assistant can't handle something,
give users an escape hatch right away

● Additional intents will come from user data

Why fewer intents?

● Older style of conversational design:
○ You need an intent for everything your

user might want to do!
● Rasa style CDD:

○ You only need to start with the most
popular, important intents & a way to
handle things outside them

○ Continue to build from there if that’s
what users need

Why fewer intents?

● Human reasons
○ More intents = more training data,

maintenance, documentation
○ More intents = annotation more difficult

● ML reasons
○ Transformer classifiers scale linearly with the

of classes*
○ Entity extraction (esp. with very lightweight

rule-based systems like Duckling) is often
faster

*Taming pretrained transformers for eXtreme multi-label text classification, Chang et al 2020 @ KDD

Paring down intents book_train:

● One train ticket
● Need to book a train ride
● A rail journey please

book_plane:
● One plane ticket
● Need to book a plane ride

● Don’t use intents as a way to store
information
○ Storing information = slots

● Do a lot of the same tokens show up
in training data for two intents?
Consider if they can be combined

● I would personally start with:
○ max 10 intents
○ min 20 training examples (for

each intent)

make_booking:

● One train ticket
● Need to book a train ride
● A [rail](train) journey please
● One [plane](air) ticket
● Need to book a [plane](air) ride
● i'd like to book a trip
● Need a vacation

Training data for an intent

● User-generated > synthetic
● Chat-based interactions tend to be

informal
● Each utterance should unambiguously

match to a single intent
○ You can verify this using human

sorting & inter-rater reliability
● Is an utterance ambiguous?

○ Use end-to-end instead (the raw text
as training data w/out classifying it)

●

Unambiguous:

● Hi there
● Hieeeeeeeeeeeee
● Hola
● I said, helllllloooooO!!!!
● What is up?
● ayyyy whaddup
● hello robot
● hello sara
● merhaba
● ola sara

Ambiguous (goes in end to end):

● good day
● ciao
● alhoa🤙

Stories = training data to
decide what your

assistant should do next

Stories = training data to
decide what your

assistant should do next
Older style: Most of the design work

Newer style: Provide examples &

system extrapolates from them

Stories

● If you have conversational data:
○ If you have conversations, start with the patterns you see in them
○ Find a new intent? Add it to your intents

● Generating your own conversational patterns:
○ It's easiest to use interactive learning to create stories (in

command line or Rasa X)
○ Start with common flows, “happy paths”
○ Then add common errors/digressions

● Once your model is trained:
○ Add user data for more ASAP

Stories

● If you have conversational data:
○ If you have conversations, start with the patterns you see in them
○ Find a new intent? Add it to your intents

● Generating your own conversational patterns:
○ It's easiest to use interactive learning to create stories (in

command line or Rasa X)
○ Start with common flows, “happy paths”
○ Then add common errors/digressions

● Once your model is trained:
○ Add user data for more ASAP

Do you need conditional logic in

your conversations? Like: "If

they're already signed in don't ask

for a name" or "never show

account balance without a PIN?

Add rules!

How do you know if it works?

● Reviewing user conversations!
● Tests

○ Sample conversions that should
always be handled the same

○ Good to shoot for 100% correct
● Validation

○ Checking that your model can guess
correctly at an acceptable rate

○ Be very suspicious of accuracy near
100% 🤔

Takeaways

● Language data is what makes
your Rasa assistant work

● Providing structure for language
data is the first step for building
NLP systems

● Start with the fewest possible,
most popular things

● Get your prototype in front of
users ASAP

Thanks! Questions?
@rctatman

