

Intro to BERT-ology

Dr. Rachael Tatman

O-second second s

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

But first! What is BERT?

Photo by See-ming Lee, shared under CC BY-SA 2.0

A language model is a statistical model of the probability of a sentence or phrase.

A specific, large transformer masked language model. P(Rasa is open source) > P(Source is Rasa open)

masked language model. A language model trained by removing words and having the model fill in the _____.

One of the big contribution of BERT was proposing this way of training language models. ↓ A specific, large transformer masked language model. A language model trained by removing words and having the model fill in the .

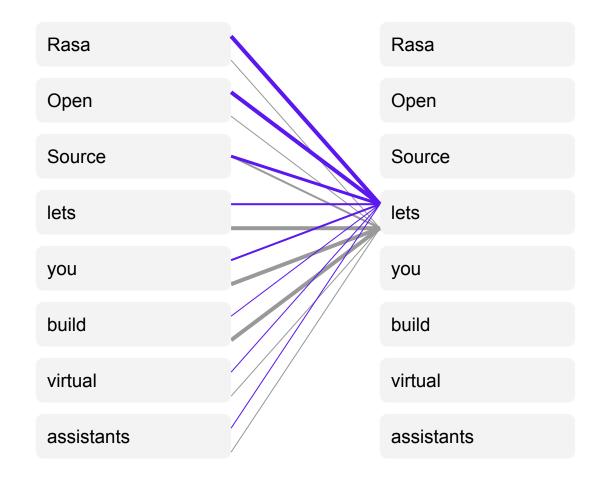
Masked language models are one kind of *contextual word embedding* and can be used as input embeddings.

Transformers are a fairly new family of neural network architectures.

@rctatman

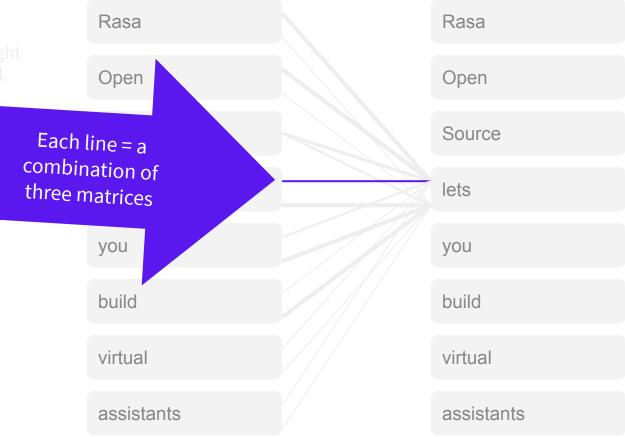
Multi-headed self attention

You learn multiple ways to weight the relationship of each item in the input sequence to all other items in the input



Multi-headed self attention

Each head is made three weight matrices which are combined.



BERT is extremely large: the large version has 340 million trainable parameters. (An earlier related model, ELMO, had only 93 million.)

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

		Compression	Performance	Speedup	Model	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
с	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	BERT ₃	No WNLI, CoLA and STS-B
Distillation	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
illa	BERT-48 (Zhao et al., 2019)	$\times 62$	87%	$\times 77$	BERT ₁₂ * [†]	MNLI, MRPC, SST-2
Dist	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
Ц	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ [†]	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	BERT_6^{\dagger}	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	$\times 27^{\S}$	mBERT3 [†]	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	×434 [‡]	BiLSTM ₁	MNLI, QQP, SST-2
int.	Q-BERT (Shen et al., 2019)	×13	99%	-	BERT ₁₂	MNLI, SST-2
Quant.	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	-	BERT ₁₂	All GLUE tasks
-	ALBERT-base (Lan et al., 2019)	×9	97%	×5.6	BERT ₁₂ **	MNLI, SST-2
Other	ALBERT-xxlarge (Lan et al., 2019)	×0.47	107%	×0.3	BERT ₁₂ **	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	BERT ₆	No WNLI

		Compression	Daufaumanaa	Speedup	Model	Evaluation
·	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
_	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	BERT ₃	No WNLI, CoLA and STS-B
tion	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
illa	BERT-48 (Zhao et al., 2019)	$\times 62$	87%	×77	BERT ₁₂ *†	MNLI, MRPC, SST-2
Distillation	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
Ц	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ [†]	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	BERT_6^{\dagger}	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$ imes 6^{\S}$	98%	$ imes 27^{\S}$	mBERT ₃ [†]	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	×434 [‡]	BiLSTM ₁	MNLI, QQP, SST-2
đ	Q-BERT (Shen et al., 2019)	×13	99%	-	BERI ₁₂	MNLI, SST-2
Quant	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	-	BERT ₁₂	All GLUE tasks
	ALBERT-base (Lan et al., 2019)	×9	97%	×5.6	BERT ₁₂ **	MNLI, SST-2
ther	ALBERT-xxlarge (Lan et al., 2019)	$\times 0.47$	107%	×0.3	BERT12**	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	BERT ₆	No WNLI

Train a small model to mimic the behavior or weights of a larger one.

"A Primer in BERTology: What we know about how BERT works" Anna Rogers, Olga Kovaleva, Anna Rumshisky

		Compression	Performance	Speedup	Model	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
С	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	BERT ₃	No WNLI, CoLA and STS-B
tion	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
Distillation	BERT-48 (Zhao et al., 2019)	×62	87%	×77	BERT ₁₂ * [†]	MNLI, MRPC, SST-2
list	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
Д	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ [†]	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	$BERT_6^{\dagger}$	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	$ imes 27^{\S}$	mBERT ₃ [†]	CoNLL-2018 POS and morphology
	Bil STM soft (Tang et al. 2019)	×110	91%	×434 [‡]	Bil STM	MNLL OOP SST-2
int.	Q-BERT (Shen et al., 2019)	×13	99%	-	BERT ₁₂	MNLI, SST-2
Quant	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	-	BERT ₁₂	All GLUE tasks
н	ALDERI-Dase (Lan et al., 2019)	×9	9170	× 3.0	DERI ₁₂	WINLI, 551-2
Other	ALBERT-xxlarge (Lan et al., 2019)	$\times 0.47$	107%	×0.3	BERT12**	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	BERT ₆	No WNLI

Quantization = reducing precision, often also reducing memory footprint

Smaller

		Compression	Performance	Speedup	Model	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
С	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	BERT ₃	No WNLI, CoLA and STS-B
tio	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
Distillation	BERT-48 (Zhao et al., 2019)	×62	87%	×77	BERT ₁₂ * [†]	MNLI, MRPC, SST-2
Dist	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
Ц	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ [†]	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	BERT_6^{\dagger}	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	$ imes 27^{\S}$	mBERT3 [†]	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	×434 [‡]	BiLSTM ₁	MNLI, QQP, SST-2
int.	Q-BERT (Shen et al., 2019)	×13	99%	-	BERT ₁₂	MNLI, SST-2
Quant.	Q8BERT (Zafrir et al., 2019)	×4	99%	-	BERT ₁₂	All GLUE tasks
	ALBERT-base (Lan et al., 2019)	×9	97%	$\times 5.6$ BERT ₁₂ ²		MNLI, SST-2
Other	ALBERT-xxlarge (Lan et al., 2019)	$\times 0.47$	107%	×0.3	BERT12**	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	BERT ₆	No WNLI

Faster

		Compression	Performan e	Speedup	I	odel	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	F	ERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	F	ERT ₆	No WNLI, CoLA and STS-B
С	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	F	ERT ₃	No WNLI, CoLA and STS-B
Distillation	(Aguilar et al., 2019)	$\times 2$	94%	-	F	ERT ₆	CoLA, MRPC, QQP, RTE
illa	BERT-48 (Zhao et al., 2019)	$\times 62$	87%	×77	F	ERT ₁₂ *†	MNLI, MRPC, SST-2
Dist	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	F	ERT ₁₂ *†	MNLI, MRPC, SST-2
Ц	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	F	$ERT_4^{*\dagger}$	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	F	ERT_{24}^{\dagger}	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	F	ERT_6^{\dagger}	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	$ imes 27^{\S}$	n	BERT_3^\dagger	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	×434 [‡]	F	LSTM ₁	MNLI, QQP, SST-2
int.	Q-BERT (Shen et al., 2019)	×13	99%	-	F	ERT ₁₂	MNLI, SST-2
Quant.	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	-	F	ERT_{12}	All GLUE tasks
	ALBERT-base (Lan et al., 2019)	$\times 9$	97%	×5.6	F	ERT ₁₂ **	MNLI, SST-2
Other	ALBERT-xxlarge (Lan et al., 2019)	$\times 0.47$	107%	×0.3	F	ERT_{12}^{**}	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	F	ERT ₆	No WNLI

Roughly as good

		Compression	Performance	Speedup	Model	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
Г	BERT ₃ -PKD (Sun et al., 2019a)	×2.4	92%	×3.7	BERT ₃	No WNLI, CoLA and STS-B
Distillation	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
illa	BERT-48 (Zhao et al., 2019)	×62	87%	×77	BERT ₁₂ *†	MNLI, MRPC, SST-2
Dist	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
Ц	TinyBERT (Jiao et al., 2019)	×7.5	96%	×9.4	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ [†]	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^{3}$	BERT_6^{\dagger}	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	$ imes 27^{\S}$	mBERT ₃ [†]	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	$\times 434^{\ddagger}$	BiLSTM ₁	MNLI, QQP, SST-2
int.	Q-BERT (Shen et al., 2019)	×13	99%	-	BERT ₁₂	MNLI, SST-2
Quant.	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	-	BERT ₁₂	All GLUE tasks
	ALBERT-base (Lan et al., 2019)	×9	97%	×5.6	BERT ₁₂ **	MNLI, SST-2
Other	ALBERT-xxlarge (Lan et al., 2019)	×0.47	107%	×0.3	BERT ₁₂ **	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	-	BERT ₆	No WNLI

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

BERT (and other masked language models) aren't human like

- They don't do things in a human-like way
 - With sufficient post-processing, you can extract linguistic structures from the weights of the model, but that's also true of the plain text input
- They're not **grounded**
 - Don't have generalizable, structured knowledge about the world
 - Not capable of reasoning ("If I have two apples and I give one away, I will have _____ apples.")
- BERT can be easily fooled by spurious statistical correspondences in the fine-tuning data
 - "Probing Neural Network Comprehension of Natural Language Arguments" by Timothy Niven, Hung-Yu Kao (ACL 2019)

BERT (and other masked language models) aren't human like

- They don't do things in a human-like way
 - With sufficient post-processing, you can extract linguistic structures from the weights of the model, but that's also true of the plain text input
- They're not **grounded**
 - Don't have generalizable, structured knowledge about the world
 - Not capable of reasoning ("If I have two apples and I give one away, I will have _____ apples.")
- BERT can be easily fooled by spurious statistical correspondences in the fine-tuning data
 - "Probing Neural Network Comprehension of Natural Language Arguments" by Timothy Niven, Hung-Yu Kao (ACL 2019)

It can be helpful to think of these sorts of models as if they had Wernicke's aphasia: they produce language but without any understanding of what it means.

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

Universal triggers are learnable strings that can dramatically decrease task performance or cause generated text to be racist/homophobic.

Task	Input (red = trigger)	Model Prediction
Sentiment	zoning tapping fiennes Visually imaginative, thematically instructive and thor- oughly delightful, it takes us on a roller-coaster ride	Positive \rightarrow Negative
Analysis	zoning tapping fiennes As surreal as a dream and as detailed as a photograph, as visually dexterous as it is at times imaginatively overwhelming.	Positive \rightarrow Negative
	"Universal Adversarial Triggers for Attacking and A Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardne (Preprint 2019)	, 0

- You can get equally good results with smaller models
- BERT is not a cognitive model
- We only know some of the security risks posed by BERT based models

I'm not trying to tear down BERT! It's an important NLP paper and made a large impact on the field.

We just have a lot to learn about masked language models and transformers.

Thanks! Questions?

@rctatman

