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Additionally, for BERTLARGE we 
found that fine-tuning was 
sometimes unstable on small 
data sets (i.e., some runs would 
produce degenerate results), so 
we ran several random restarts 
and selected the model that 
performed best on the Dev set. 

(Devlin et al 2019)
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I would personally use deep learning if...

● A human can do the same task 
extremely quickly (<1 second)

● I have high tolerance for weird errors
● I don’t need to explain myself
● I have a large quantity of labelled data 

(>5,000 items per class)
● I’ve got a lot of time (for training) and 

money (for annotation and compute)
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Regression 📈
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The OG ML technique

● In regression, you pick the 
family of the function you’ll 
use to model your data

● Many existing kinds of 
regression models

✓ Fast to fit
✓ Works well with small data
✓ Easy to interpret
✘ More data preparation
✘ Models require validation 
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My go-to?
Mixed effects regression
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# imports for mixed effect libraries
import statsmodels.api as sm
import statsmodels.formula.api as smf

# model that predicts chance of admission based on 
# GRE & TOEFL score,with university rating as a random effect
md = smf.mixedlm("chance_of_admit ~ gre_score + toefl_score",             

  train, # training data
                 groups=train["university_rating"])

# fit model
fitted_model = md.fit()
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Mixed Linear Model Regression Results
=============================================================
Model:            MixedLM Dependent Variable: chance_of_admit
No. Observations: 300     Method:             REML           
No. Groups:       5       Scale:              0.0055         
Min. group size:  21      Likelihood:         332.7188       
Max. group size:  99      Converged:          Yes            
Mean group size:  60.0                                       
--------------------------------------------------------------
              Coef.   Std.Err.     z     P>|z|  [0.025  0.975]
--------------------------------------------------------------
Intercept     -1.703     0.169  -10.097  0.000  -2.033  -1.372
gre_score      0.005     0.001    7.797  0.000   0.004   0.007
toefl_score    0.007     0.001    4.810  0.000   0.004   0.009
Group Var      0.002     0.020                               
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Trees 🌳
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Tree based methods
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Random Forests
● An ensemble model that combines 

many trees into a single model
● Very popular, especially with Kaggle 

competitors
○ 63% of Kaggle Winners 

(2010-2016) used random forests, 
only 43% deep learning

● Tend to have better performance 
than logistic regression
○ “Random forest versus logistic 

regression: a large-scale benchmark 
experiment”,  Couronné et al 2018

Venkata Jagannath [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
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Benefits & Drawbacks

✓ Require less data cleaning & model 
validation

✓ Many easy to use packages
○ XGBoost, LightGBM, CatBoost, new one 

in next scikit-learn release candidate
✖ Can overfit
✖ Generally more sensitive to differences 

between datasets
✖ Less interpretable than regression
✖ Especially for ensembles, can require more 

compute/training time
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import xgboost as xgb

# split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

# specify model (xgboost defaults are generally fine)
model = xgb.XGBRegressor()

# fit our model
model.fit(y=Y, X=X)
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Method Time Money Data
Deep 
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance 
Based
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Distance 🔢
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Distance based methods

● Basic idea: points closer 
together to each other in 
feature space are more 
likely to be in the same 
group

● Some examples: 
○ K-nearest neighbors 
○ Gaussian Mixture Models
○ Support Vector Machines

Junkie.dolphin [CC BY-SA 3.0 
(https://creativecommons.org/licenses/by-sa/3.0)]

Antti Ajanki AnAj [CC BY-SA 3.0 
(http://creativecommons.org/licenses/by-sa/3.0/)]
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Benefits & Drawbacks

✓ Work well with small datasets
✓ Tend to be very fast to train
✖ Overall accuracy is fine, other 

methods usually better
✖ Good at classification, generally 

crummy/slow at estimation
● These days, tend to show up 

mostly in ensembles 
● Can be a good fast first pass at 

a problem
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from sklearn.svm import SVR

# split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

# specify hyperparameters for regression model
model = SVR(gamma='scale', C=1.0, epsilon=0.2)

# fit our model
model.fit(y=Y, X=X)
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Method Time Money Data
Deep 
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance 
Based Very little Very little Very little
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So what method 
should you use?��
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Method Time Money Data
Deep 
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance 
Based Very little Very little Very little
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Method Time Money Data
Performance 
(Ideal case) 

Deep 
Learning A lot A lot A lot Very high

Regression Some A little A little Medium

Trees Some A little Some High

Distance 
Based Very little Very little Very little So-so
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Method Time Money Data
Performance 
(Ideal case) 

Deep 
Learning A lot A lot A lot Very high

Regression Some A little A little Medium

Trees Some A little Some High

Distance 
Based Very little Very little Very little So-so

User Friendliest

Most Lightweight

Most Interpretable

Most Powerful
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Data Science != Deep Learning

● Deep learning is extremely powerful 
but it’s not for everything

● Don’t be a person with a hammer
● Deep learning isn’t the core skill in 

professional data science
○ “I always find it interesting how little 

demand there is for DL skills... Out of 
>400 postings so far, there are 5 
containing either PyTorch, TensorFlow, 
Deep Learning or Keras” -- Dan Becker
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Thanks!
Questions?

Code & Slides:
https://www.kaggle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/

https://www.kaggle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/


@rctatman

Honorable mention: 
Plain ol’ rules
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Sometimes ✋ Hand-Built ✋ Rules are Best

Some examples of proposed deep learning projects from the Kaggle 
forums that should probably be rule-based systems:

● Convert Roman numerals (IX, VII) to Hindu-Arabic numerals (9, 7)
● Automate clicking the same three buttons in a GUI in the same 

order
● Given a graph, figure out if a list of nodes is a valid path through it
● Correctly parse dates from text (e.g. “tomorrow”, “today”)

Remember: If it’s stupid but it works, it’s not stupid.
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