

# 5 mistakes you'll probably make with language data (and how to recover)

Dr. Rachael Tatman (@rctatman) Senior Developer Advocate, Rasa HQ

- 1. Transcribed speech != text
- 2. Not expecting variation
- 3. Doing too much text cleaning
- 4. Not using meta-data
- 5. Anglo-Centrism

### **Transcribed speech != text**

- People do not speak in full sentences (your parser will break!)
- Punctuation will depend on your ASR
- Speech includes disfluencies (uh, um, etc), they are natural and normal **and** contain information
- Token frequency is very different between speech & text



#### Tokens

Speech

- More pronouns
- More skewed frequency

Text

• More rare words

| Table 4 | The 10 most | frequent | words | in speech | and | writing |
|---------|-------------|----------|-------|-----------|-----|---------|
|---------|-------------|----------|-------|-----------|-----|---------|

| Rank | Speech         | Frequency | Writing         | Frequenc |
|------|----------------|-----------|-----------------|----------|
|      |                |           |                 | У        |
|      |                |           |                 |          |
| 1.   | de (det) (it)  | 16898     | och (and)       | 8378     |
| 2.   | e (är) (is)    | 6666      | i (in)          | 7683     |
| 3.   | å (och) (and)  | 6645      | att (that, to)  | 6638     |
| 4.   | så (so)        | 6424      | det (it)        | 5887     |
| 5.   | ja (jag) (I)   | 5977      | som(that,whic   | 4808     |
| 6.   | att (that, to) | 5579      | h)              | 4638     |
| 7.   | ja (yes)       | 4475      | en (a, an, one) | 4161     |
| 8.   | på (on)        | 4043      | på (on)         | 3923     |
| 9.   | som            | 3866      | är (is)         | 3243     |
| 10.  | (that,which)   | 3794      | med (with)      | 3133     |
|      | man (one)      |           | av (of, by)     |          |

Allwood, J. (1998). Some frequency based differences between spoken and written Swedish. In *Proceedings of the 16th Scandinavian Conference of Linguistics, Turku University, Department of Linguistics* (pp. 18-29).

- Do not try to use a speech model for text without tuning (and vice versa)
- Budget extra time for multimodal work

## Underestimating variation

- Social variation
  - who is saying/writing this?
- Genre/register
  - How are the communicating? Formal, informal, professional?
  - What are they talking/writing about? (Velodromes or finance?)
- Models trained on one variety don't often transfer easily



## Sociolinguistic variation exists at every level of the grammar

- a. Phonetics & sub-lexical features:
  - i. cot/caught merger
  - ii. :) vs. :-)
- b. Lexical variation
  - i. firefly vs. lightning bug
- c. Syntactic variation
  - i. Needs washed
  - ii. We stay home anymore
- d. Semantic variation
  - i. lift, torch, boot



### **Genre/register?**

Some big ones you might run into:

- "Noisy user-generated text" (Twitter, Reddit, etc.)
- Phone calls/conversations
- Reviews (Yelp, Amazon, etc.)
- The Wall Street Journal (it's a very popular corpus)
- The one you're trying to analyze/use



- Know about language variation
- Use socially-stratified
  validation to make sure
  your model works
  across groups
- Find data as close to your target a possible

## Overdoing the text cleaning (baby out with the bathwater)



#### "i love cheesecake" vs "I LOOOOVE CHEESECAKE!"

## Overdoing the text cleaning (baby out with the bathwater)

- You can and should keep stop words if you're not using a frequency-based technique (e.g. tf-idf)
- Pre-trained LM's do *not* remove stop words, if you're using them you'll need to keep them in

## Overdoing the text cleaning (baby out with the bathwater)

keep stop words using frequency-based technique (e.g. tf-idf)

 Pre-trained LM's remove stop words, using need keep

NLTK's English stopwords

- Only do the text
  cleaning you absolutely
  need to for the specific
  methods you're using
- Work on a copy of the data so you can get to the original

### **Only looking at the text**

- WHO is saying/writing this?
  - Has this customer just called ten times in a row? ...
- WHEN did they say/write it?
  - Language change is constant!
  - The world & things we talk about change!
- WHERE/HOW did they say/write it?
  - On what platform?
- WHY did they say/write it?
  - Especially important for task-oriented systems



 Make sure you're looking at that sweet sweet metadata

#### **Anglo-centrism**

Not all languages...

- Are written or spoken
- Having big training corpora are available
- Use white space
- User words as the smallest unit of meaning
- Have canonical spellings
- Are used one at a time (code-switching)



#### Orgs & Resources for Non-English!

- Masakhane (https://www.masakhane.io/)
  - A grassroots NLP community for Africa, by Africans
- NLP en ES (https://nlp-en-es.org/)
  - "NLP en ES " es la comunidad de hispanohablantes de la iniciativa "Languages at Hugging Face"
- Natural Language Processing group from Universidad de la República (UdelaR) Uruguay 😂 (https://www.fing.edu.uy/inco/grupos/pln)
  - Resources: https://github.com/pln-fing-udelar/pln-inco-resources
- Search for target language on <u>https://aclanthology.org/</u> (free peer reviewed papers from all ACL conferences, which are the big NLP research venues!)

- Keep in mind that most people don't use English
- Hire a language consultant for your target language(s)
- Budget additional time

- 1. Transcribed speech != text
- 2. Not expecting variation
- 3. Doing too much text cleaning
- 4. Not using meta-data
- 5. Anglo-Centrism

### Some last tips

- It pays to be a little paranoid
- LOOK at your data at every stage
- Do as little as possible to your data
- Modular, flexible pipelines
- Budget for better (i.e. more relevant) data
- Testing, validation & evaluation!
- Don't reinvent the wheel!



