
Unsupervised Text 
Classification & Clustering:
What are folks doing these days?

Rachael Tatman, Kaggle











Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs



Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs

Solution: Unsupervised clustering to 
summarize common topics & user 
concerns



Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs

Solution: Unsupervised clustering to 
summarize common topics & user 
concerns



Some ground rules:

● Needs to be in Python or R
○ I’m livecoding the project in Kernels & those are the only two languages we support
○ I just don’t want to use Java or C++ or Matlab whatever 

● Needs to be fast to retrain or add new classes 
○ New topics emerge very quickly (specific bugs, competition shakeups, ML papers)
○ I'll probably have to re-run it daily or weekly
○ Eventually... streaming?

● Want to avoid large/weird dependencies
○ “Oh, that’s just some .jar I downloaded from a random website. The code doesn’t run without it 

and I’m sure it’s fine to just stick in our codebase.”

● Clusters/topics should be easily interpretable



I asked on Twitter!
Lots of good ideas!

Three main bins:

● End-to-end solutions
● Suggestions for feature engineering 

+ clustering
● Misc. tips & tricks (ex: embeddings 

-> PCA -> remove 1st principle 
component)

https://twitter.com/rctatman/status/1133806246182604800


End-to-end solutions

● Gensim
✓ In Python, no weird dependencies
✓ Old standby that incorporates a looot of differents methods
✓ Don’t need whole corpus in memory (but mine’s not that big)
❌ Under LGPL (probably fine for prototyping, but might need to meet with legal if I’m using it for 

work stuff)

● BigARTM
✓ Can incorporate multiple objectives at once (sparsing, smoothing, decorrelation, etc.)
❌ Weird dependency/install process (it’s a C++ library with a Python API)

● TopSBM
✓ Came highly recommended: “Scary good”
❌ Weird dependency (graph-tool, which is C++ with a Python wrapper)

https://radimrehurek.com/gensim/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://github.com/bigartm/bigartm
https://topsbm.github.io/


Feature Engineering: Words to numbers
● Traditional Topic Modelling Approaches

○ LDA: Slow, hard to interpret, not my fave
○ pLSA: Cheaper version of LSA, tends to overfit
○ tf-idf: Hard to interpret, my texts (forums posts) are too short

● Embeddings
○ GloVe: considers context, can’t handle new words
○ Word2vec: doesn’t handle small corpuses very well, very fast to train 
○ fasttext: can handle out of vocabulary words (extension of word2vec)

● Contextual embeddings (don’t think I have enough data to train my own…)
○ ELMO, BERT, etc.: I consider these more of a replacement for language models 
○ USE embeddings: Not super familiar with this but looks useful for applying to sentence 

similarity

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf


Feature Engineering: Words to numbers
● Traditional Topic Modelling Approaches

○ LDA: Slow, hard to interpret, not my fave
○ pLSA: Cheaper version of LSA, tends to overfit
○ tf-idf: Hard to interpret, my texts (forums posts) are too short

● Embeddings
○ GloVe: considers context, can’t handle new words
○ Word2vec: doesn’t handle small corpuses very well, very fast to train
○ fasttext: can handle out of vocabulary words (extension of word2vec)

● Contextual embeddings (don’t think I have enough data to train my own…)
○ ELMO, BERT, etc.: I consider these more of a replacement for language models 
○ USE embeddings: Not super familiar with this but looks useful for applying to sentence 

similarity

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf


Feature Engineering: Dimensionality Reduction
● UMAP:

○ Recommended to me by, among other people, Leland McInnes, the researcher who 
developed it 😂 (he suggested using hellinger distance)

○ Similar to t-SNE but can also be used for non-linear dimension reduction 
○ Something about manifolds? (The math’s a little over my head, tbh)

● PCA:
○ OG dimensionality reduction (paper is from 1901!) but on its own maybe not the best
○ Trick: remove first principal component as a way to reduce the weight of “expected” words

■ (from Arora (2018) 'A simple but tough to beat baseline for sentence embeddings')

https://github.com/lmcinnes/umap


Feature Engineering: Dimensionality Reduction
● UMAP:

○ Recommended to me by, among other people, Leland McInnes, the researcher who 
developed it 😂 (he suggested using hellinger distance)

○ Similar to t-SNE but can also be used for non-linear dimension reduction 
○ Something about manifolds? (The math’s a little over my head, tbh)

● PCA:
○ OG dimensionality reduction (paper is from 1901!) but on its own maybe not the best
○ Trick: remove first principal component as a way to reduce the weight of “expected” words

■ (from Arora (2018) 'A simple but tough to beat baseline for sentence embeddings')

https://github.com/lmcinnes/umap


Wildcard!
● Unsupervised keyword extraction: 

YAKE
○ Extracts keywords from single texts
○ Could use it as dimensionality reduction
○ Keywords -> embeddings -> clustering?
○ One of their sample texts is about the 

Kaggle acquisition! 😊
○ Haven’t played around with it, but came 

highly recommended
○ pip install git+https://github.com/LIAAD/yake

https://github.com/LIAAD/yake
https://github.com/LIAAD/yake


Wildcard!
● Lda2vec

○ Embeddings + topic models trained 
simultaneously

○ Developed at StitchFix 3ish years ago
○ Still pretty experimental but could be helpful
○ Under MIT license
○ Has a tutorial notebook
○ Might be very slow???

https://multithreaded.stitchfix.com/blog/2016/05/27/lda2vec/#topic=38&lambda=1&term=
https://nbviewer.jupyter.org/github/cemoody/lda2vec/blob/master/examples/twenty_newsgroups/lda2vec/lda2vec.ipynb


Clustering: 
● Brown Clusters

○ Doesn’t require feature engineering; can take words directly
○ Hierarchical clusters (could be useful for visualization/exploration)
○ Can be actively updated (wouldn’t have to retrain)

● DBSCAN/H(ierarchical)DBSCAN
○ Could take embeddings
○ Clusters assumed to be of similar densities 

● Spectral clustering
○ Doesn’t make assumptions about spatial distribution of data
○ In sklearn



Clustering: 
● Brown Clusters

○ Doesn’t require feature engineering; can take words directly
○ HIerarchical clusters (could be useful for visualization/exploration)
○ Can be actively updated (wouldn’t have to retrain)

● DBSCAN/H(ierarchical)DBSCAN
○ Could take embeddings
○ Clusters assumed to be of similar densities 

● Spectral clustering
○ Doesn’t make assumptions about spatial distribution of data
○ In sklearn



Next stage: Experiments

word2vec fasttextfasttext USE

UMAP PCA - 1st YAKE lda2vec

HDBSCAN Spectral 
Clustering

Brown 
Clustering



Next stage: Experiments

word2vec fasttextfasttext USE

UMAP PCA - 1st YAKE lda2vec

HDBSCAN Spectral 
Clustering

Brown 
Clustering

Trying first



Future work
● Slackbot!

○ For now, I’ll probably run the code in Kernels

● Other things I want to do as part of this project
● Identify questions I'm likely to answer

○ Extend to arbitrary user

● Build an alerting system that flags sudden new trends on the forums 
(competition drama, major bug, etc.)

○ I doooon't want to handle streaming data :weary:



Thanks! 
I’m very open to feedback/ 
suggestions :)

@rctatman


