
@rctatman

PUT DOWN THE DEEP LEARNING
When not to use neural networks

(and what to do instead)

Dr. Rachael Tatman
Data Scientist Advocate @ Kaggle

@rctatman

@rctatman
Potterjk [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

@rctatman
Potterjk [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Additionally, for BERTLARGE we
found that fine-tuning was
sometimes unstable on small
data sets (i.e., some runs would
produce degenerate results), so
we ran several random restarts
and selected the model that
performed best on the Dev set.

(Devlin et al 2019)

@rctatman

GPT-2 model from OpenAI

��

💸
🤑

@rctatman

I would personally use deep learning if...

● A human can do the same task
extremely quickly (<1 second)

● I have high tolerance for weird errors
● I don’t need to explain myself
● I have a large quantity of labelled data

(>5,000 items per class)
● I’ve got a lot of time (for training) and

money (for annotation and compute)

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

Regression

Trees

Distance
Based

@rctatman

Regression 📈

@rctatman

The OG ML technique

● In regression, you pick the
family of the function you’ll
use to model your data

● Many existing kinds of
regression models

✓ Fast to fit
✓ Works well with small data
✓ Easy to interpret
✘ More data preparation
✘ Models require validation

@rctatman

My go-to?
Mixed effects regression

@rctatman

imports for mixed effect libraries
import statsmodels.api as sm
import statsmodels.formula.api as smf

model that predicts chance of admission based on
GRE & TOEFL score,with university rating as a random effect
md = smf.mixedlm("chance_of_admit ~ gre_score + toefl_score",

 train, # training data
 groups=train["university_rating"])

fit model
fitted_model = md.fit()

@rctatman

Mixed Linear Model Regression Results
===
Model: MixedLM Dependent Variable: chance_of_admit
No. Observations: 300 Method: REML
No. Groups: 5 Scale: 0.0055
Min. group size: 21 Likelihood: 332.7188
Max. group size: 99 Converged: Yes
Mean group size: 60.0
--
 Coef. Std.Err. z P>|z| [0.025 0.975]
--
Intercept -1.703 0.169 -10.097 0.000 -2.033 -1.372
gre_score 0.005 0.001 7.797 0.000 0.004 0.007
toefl_score 0.007 0.001 4.810 0.000 0.004 0.009
Group Var 0.002 0.020

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

Regression Some A little A little

Trees

Distance
Based

@rctatman

Trees 🌳

@rctatman

Tree based methods

@rctatman

Random Forests
● An ensemble model that combines

many trees into a single model
● Very popular, especially with Kaggle

competitors
○ 63% of Kaggle Winners

(2010-2016) used random forests,
only 43% deep learning

● Tend to have better performance
than logistic regression
○ “Random forest versus logistic

regression: a large-scale benchmark
experiment”, Couronné et al 2018

Venkata Jagannath [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5

@rctatman

Benefits & Drawbacks

✓ Require less data cleaning & model
validation

✓ Many easy to use packages
○ XGBoost, LightGBM, CatBoost, new one

in next scikit-learn release candidate
✖ Can overfit
✖ Generally more sensitive to differences

between datasets
✖ Less interpretable than regression
✖ Especially for ensembles, can require more

compute/training time

@rctatman

import xgboost as xgb

split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

specify model (xgboost defaults are generally fine)
model = xgb.XGBRegressor()

fit our model
model.fit(y=Y, X=X)

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance
Based

@rctatman

Distance 🔢

@rctatman

Distance based methods

● Basic idea: points closer
together to each other in
feature space are more
likely to be in the same
group

● Some examples:
○ K-nearest neighbors
○ Gaussian Mixture Models
○ Support Vector Machines

Junkie.dolphin [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)]

Antti Ajanki AnAj [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0/)]

@rctatman

Benefits & Drawbacks

✓ Work well with small datasets
✓ Tend to be very fast to train
✖ Overall accuracy is fine, other

methods usually better
✖ Good at classification, generally

crummy/slow at estimation
● These days, tend to show up

mostly in ensembles
● Can be a good fast first pass at

a problem

@rctatman

from sklearn.svm import SVR

split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

specify hyperparameters for regression model
model = SVR(gamma='scale', C=1.0, epsilon=0.2)

fit our model
model.fit(y=Y, X=X)

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance
Based Very little Very little Very little

@rctatman

So what method
should you use?��

@rctatman

Method Time Money Data
Deep
Learning A lot A lot A lot

Regression Some A little A little

Trees Some
(esp for big ensembles)

A little Some

Distance
Based Very little Very little Very little

@rctatman

Method Time Money Data
Performance
(Ideal case)

Deep
Learning A lot A lot A lot Very high

Regression Some A little A little Medium

Trees Some A little Some High

Distance
Based Very little Very little Very little So-so

@rctatman

Method Time Money Data
Performance
(Ideal case)

Deep
Learning A lot A lot A lot Very high

Regression Some A little A little Medium

Trees Some A little Some High

Distance
Based Very little Very little Very little So-so

User Friendliest

Most Lightweight

Most Interpretable

Most Powerful

@rctatman

Data Science != Deep Learning

● Deep learning is extremely powerful
but it’s not for everything

● Don’t be a person with a hammer
● Deep learning isn’t the core skill in

professional data science
○ “I always find it interesting how little

demand there is for DL skills... Out of
>400 postings so far, there are 5
containing either PyTorch, TensorFlow,
Deep Learning or Keras” -- Dan Becker

@rctatman

Thanks!
Questions?

Code & Slides:
https://www.kaggle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/

https://www.kaggle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/

@rctatman

Honorable mention:
Plain ol’ rules

@rctatman

Sometimes ✋ Hand-Built ✋ Rules are Best

Some examples of proposed deep learning projects from the Kaggle
forums that should probably be rule-based systems:

● Convert Roman numerals (IX, VII) to Hindu-Arabic numerals (9, 7)
● Automate clicking the same three buttons in a GUI in the same

order
● Given a graph, figure out if a list of nodes is a valid path through it
● Correctly parse dates from text (e.g. “tomorrow”, “today”)

Remember: If it’s stupid but it works, it’s not stupid.

@rctatman(I actually made this figure in R 🤫)

