PUT DOWN THE DEEP LEARNING

When not to use neural networks
(and what to do instead)

Dr. Rachael Tatman
Data Scientist Advocate @ Kaggle

@rctatman

Feeble humans prove no match for
OpenAl's Dota 2 gods M\ﬁ%
' ess ICro
ly 42 in the proc sOft reaCh
n

mans, losing on
pal’it_y' W'
r ey e WS
ecognition syste '1p1eech

By Sam Byford !

he Al won 7,215 matches against hu
@vladsavov | Apr 23, 2019, 9:25am EDT

T

By Vlad Savov |

@345tri
angle I Oct 18, 2016 8k7
» J4/pm EDT

Goo
gle's SCI-TECH

A'PhaGo f Y © o
all on its own

Th i
€ new artificja| neural

s New Robot |s Better at
Things Than You Are

2019 at 2:51 pm

f , CT:.BER : 2017 g: AM PDT
: Google’
" Tossing

By Ryan Whitwam on March 27,
@rctatman

Addltlonally, for BERTLARGE we

data sets (i.e., some runs would
produce degenerate results), so
. we ran several random restarts
< and selected the model that
' performed best on the Dev set.
(Devlin et al 2019) |

s .

;) v
(Follow
Mario Klingemann €

I

J PT-2 model from openg &
stormtrooper1729 @stormtroper1721 “Feb 14 v
S ain your own ‘ Replying to @Smerity @Google @Opena
@quasuﬂon t Cost to tr h e How long do you think they ran the Models for? A week? That would come out to
uch WOU‘d | if we had i almost §15
row mAN from scratch | O n
#BigG 2
Fye code’”
training

& 5]
[12 TPU @
2x512 model requires 5
The 512X

D Smeri(y @Smerity *Feb 14

TPU per
hich cost US$ 2.40 per
v3 W

N2
d be $8 x 256 X(7x24)= $344 064 Without any additiong|
information it's hard to €Ven guess hoy long training might take. They also report
in the Paper that jt's still underﬁm‘ng So they'd likely happily et t sit there for as
long as they could,
- es O 2 () QO 1]
it tak
aper It t
d‘ng to the p p tra‘n a g b Smerity @Smenty “Feb 14 v
r ACCOr 8 hours to ‘@ Gah, sorry, to clarify, jt's g times |ess ($43,008) as | mistook cores for TPys, Still
hOU . 24 and 4 a stupendoys amount!
en
betwe
= ‘—; Smerity @Smerity
mode‘ . o | % E.i [Gah, yoy're right, it's 256 cores and not 256 TPUs. After
be yours - . — = double checking (TPUV2 has 2 cores Per chip vs TPUv3
59 000 |t Can Eég g}@ with 4 cores), I'm off by i
S_= =0 edits - i
For $59. SRR L
2018 : @
- 22 Nov @
6:17 AM) a ik
ts 253 Likes ‘ @ ” g

55 Retwee

[} Q 2

5
&
T:l i @ 253
e 2t

@rctatman

| would personally use deep learning if...

e A human can do the same task == .
. puppy or bagel ?
extremely quickly (<1 second) < Abums puppyorbagel Select

e | have high tolerance for weird errors

e | don’t need to explain myself

e | have a large quantity of labelled data
(>5,000 items per class)

e |'ve got a lot of time (for training) and

money (for annotation and compute) n E —

@rctatman

Method Time Money Data

Deep

: A lot A lot A lot
Learning

@rctatman

Method Time

Deep

: A lot
Learning

Regression

Trees

Distance
Based

Money

A lot

Data

A lot

@rctatman

Regression

‘‘‘‘‘

@rctatman

The OG ML technique

10

(L=}
&
3

In regression, you pick the
family of the function you'll &
use to model your data
Many existing kinds of
regression models

Fast to fit

Works well with small data
Easy to interpret B
More data preparation 0
Models require validation

¢ Data points *
| inear regression

1 2 3 4

X X NSNS

@rctatman

My go-to? %ﬁ .
Mixed effects regression o i}iég/
N

@ \

@rctatman

imports for mixed effect libraries
import statsmodels.api as sm
import statsmodels.formula.api as smf

model that predicts chance of admission based on
GRE & TOEFL score,with university rating as a random effect
md = smf.mixedlm("chance_of_admit ~ gre_score + toefl_score",
train, # training data
groups=train["university_rating"])

fit model
fitted_model = md.fit()

@rctatman

Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: chance_of_admit
No. Observations: 300 Method: REML

No. Groups: 5 Scale: 0.0055

Min. group size: 21 Likelihood: 332.7188

Max. group size: 99 Converged: Yes

Mean group size: 60.0

Coef. Std.Err. Z P>|z| [0.025 ©.975]
Intercept -1.703 0.169 -10.097 ©0.000 -2.033 -1.372
gre_score 0.005 0.001 7.797 0.000 0.004 0.007
toefl_score 0.007 0.001 4.810 0.000 0.004 0.009
Group Var 0.002 0.020

@rctatman

Method

Deep
Learning

Regression

Trees

Distance
Based

Time

A lot

Some

Money

A lot

A little

Data

A lot

A little

@rctatman

Trees &3

Tree based methods

Dependent variable: PLAY

Play 9

Don't Play 5

OUTLOOK ?
sunny overcast rain

Play 2 Play 4 Play 3

Don't Play 3 Don't Play 0 Don't Play 2

HUMIDITY 2 IND 7\

<= 70 >70 TRUE FALSE

Play 2 Play 0 Play 0 Play 3
Don't Play 0 Don't Play 3 Don't Play 2 Don't Play 0

@rctatman

Random Forests

e An ensemble model that combines Random Forest Simplified
many trees into a single model Instance

e \ery popular, especially with Kaggle RandomV \
competitors
o 63% of Kaggle Winners @ {: : ? Z.

(2010-2016) used random forests, Tree-1 Tree-2 Tree-n
only 43% deep learning

e Tend to have better performance L |
| Majority-Voting | |

than logistic regression .
O RandOm foreSt vVersus IOC“Sth Venkata Jagannath [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

regression: a large-scale benchmark
experiment”, Couronné et al 2018

Class-A Class-B Class-B

@rctatman

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5

Benefits & Drawbacks

XX XX

Require less data cleaning & model
validation
Many easy to use packages

o XGBoost, LightGBM, CatBoost, new one

in next scikit-learn release candidate

Can overfit
Generally more sensitive to differences
between datasets
Less interpretable than regression
Especially for ensembles, can require more
compute/training time

@rctatman

import xgboost as xgb

split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

specify model (xgboost defaults are generally fine)
model = xgb.XGBRegressor()

fit our model
model.fit(y=Y, X=X)

@rctatman

Method Time Money
Deep

. A lot A lot
Learning
Regression Some A little
Trees Some A little
(esp for big ensembles)
Distance

Based

Data

A lot

A little

Some

@rctatman

Distance 4

@rctatman

Distance based methods

e Basic idea: points closer
together to each other in
feature space are more
likely to be in the same
group

e 3Some examples:

o K-nearest neighbors

o (Gaussian Mixture Models
o Support Vector Machines

2z

°

Time between registration and first edit (N = 3484055)

Main namespace onl
0.25 1esp e

o 2 2, 4,2, 2
i i 57 w"é/’"’ﬁy,: Yoo

0.20

0.15f

0.10

0.05f

0.00

-15 : —iO -5

log(days)
Junkie.dolphin [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)]

~
~ P

S _— -

Antti Ajanki AnAj [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0/)]

@rctatman

Benefits & Drawbacks

X AL

Work well with small datasets
Tend to be very fast to train
Overall accuracy is fine, other
methods usually better

Good at classification, generally
crummy/slow at estimation
These days, tend to show up
mostly in ensembles

Can be a good fast first pass at
a problem

E|~

wx-b=1

@rctatman

from sklearn.svm import SVR

split training data into inputs & outputs
X = train.drop(["chance_of_admit"], axis=1)
Y = train["chance_of_admit"]

specify hyperparameters for regression model
model = SVR(gamma='scale', C=1.0, epsilon=0.2)

fit our model
model.fit(y=Y, X=X)

@rctatman

Method Time Money
Deep

. A lot A lot
Learning
Regression Some A little
Trees Some A little
(esp for big ensembles)
Distance

Based

Very little Very little

Data

A lot

A little

Some

Very little

So what method
should you use?

Method Time Money
Deep

. A lot A lot
Learning
Regression Some A little
Trees Some A little
(esp for big ensembles)
Distance

Based

Very little Very little

Data

A lot

A little

Some

Very little

Method

Deep
Learning

Regression

Trees

Distance
Based

Time Money

A lot A lot

Some A little

Some A little

Very little = Very little

Data

A lot

A little

Some

Very little

Performance
(Ideal case)

Very high

Medium

High

S0-so

Performance
Method Time Money Data (Ideal case)

Deep ; Most Powerful -
Learning oSt Foweriu A lot Very high
Regression ; Most Interpretable %tle Medium

Distancemost Lightweight ery little S0-S0
Based

Data Science != Deep Learning

e Deep learning is extremely powerful
but it's not for everything

e Don’t be a person with a hammer

e Deep learning isn’t the core sKill in

professional data science
o “l always find it interesting how little
demand there is for DL skills... Out of
>400 postings so far, there are 5
containing either PyTorch, TensorFlow,
Deep Learning or Keras” -- Dan Becker

@rctatman

Thanks!
Questions?

Code & Slides:

https://www.kaqgagle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/

@rctatman

https://www.kaggle.com/rtatman/non-deep-learning-approaches
http://www.rctatman.com/talks/

Honorable mention:
Plain ol’ rules

@rctatman

Sometimes |» Hand-Built |* Rules are Best

Some examples of proposed deep learning projects from the Kaggle
forums that should probably be rule-based systems:

e Convert Roman numerals (IX, VII) to Hindu-Arabic numerals (9, 7)

e Automate clicking the same three buttons in a GUI in the same
order

e Given a graph, figure out if a list of nodes is a valid path through it

7 11

e Correctly parse dates from text (e.g. “tomorrow”, “today”)
it's not stupid.

@rctatman

femember- If it's stupid but it works,

120~

'
o
-—
—

@rctatman

gre_score
340
330
320
310
300
290

1.0

08 ;

0.6

(I actually made this figure in R (:2))

0.4

'
0.8 1.0

06
chance_of admit

1.0 04

' '
0.8

'
0.6

e
0.4

110-
100~

.
o
N
-~

2100S |}90]

