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Background
Why care about reproducibility?
● It’s good science, but it also helps ML practitioners
● Research code is sample code; if people can’t get it to run

they can’t apply your findings
● Reproducible code has a broader impact than non-repro-

ducible code

Related work & contribution
● There’s been a lot of discussion of the importance of reproducibility [1,2,3,4,5,6]
● Here, we offer a practical framework for evaluating the reproducibility of a project and 

tips for improving reproducibility 

As a scale
● Reproducibility is a spectrum, not a binary
● We propose an updated version of Peng (2011’s) reproducibility scale (see below) with 

three levels (see sidebar →)
● The less time a reproducer needs to spend on a project, the more reproducible it is

Low Reproducibility 
● Only sharing the paper
● Was standard before the ability to 

easily share code & data
● Example: Gelly & Silver 2007 [9]

Medium Reproducibility
● Sharing both code and data (if data was used, it should be anonymized & shared)
● Currently the most common way of sharing research code
● Still requires substantial time investment to get environment set up (need to account for 

versions and subversions of requirements)
● Example: “Lost relatives of the Gumbel trick”, Balog et al 2017 [10]
● Some tips for improving medium reproducibility research:

a. Separate preprocessing, modeling & evaluation and distribute data and code for each 
step

b. Document the original environment
c. Ensure that your code and data are licensed for reuse (see Morin et al. [11])

High Reproducibility
● Sharing data, code, and the environment 

needed to run the code
● Three options for sharing executable 

environments (in order of decreasing 
time commitment)
a. Virtual machines
b. Containers
c. Hosted notebooks\scripts

● Example: "Understanding Black-box 
Predictions via Influence Functions", Koh 
& Laing 2017 [13]

Other Considerations
Too few researchers share their 
code/data ʭ
● <40% of papers from NIPS 2017 shared 

their code
● There were high reproducibility papers, 

through, like Liu et al [14] 

Link rot is a big problem
● Code that is shared does not always 

remain available
● 20% of links in NLP papers were 

deprecated within 5 years [15]

High Reproducibility Options 
for Sharing Research

Virtual machines
●Code, data, all dependencies and a complete 

OS
●Excellent reproducibility, but files can be very 

large and slow to spin up
●Popular options: VirtualBox, VMware

Containers
●Code, data and all the dependencies needed 

to run the code in a single portable format
●Use the OS of the local system, so can be 

difficulties moving between OS’s
●Popular option: Docker

Hosted notebooks\scripts
●Allows reproduction from a browser
●Generally faster and easier to run (don’t 

require large downloads or set up time)
●Most services don’t provide enough free 

compute to reproduce very computationally 
intensive studies 

●Commercial options: Kaggle Kernels, Google 
Colaboratory, Amazon SageMaker, IBM 
Watson Studio, Azure Notebooks

●Not-for-profit options: MyBinder, PanGeo, 
Codalab

Reproducibility scale from Peng (2011) [1]

“Reproducible” here 
means achieving the 

same results/output as 
the original paper using 

the same data*
* See [7] & [8] for a discussion of terminology: in 

many fields this is instead called “replicable”

Low:
● Finished paper only
● No code or data 

shared

Medium:
● Code shared
● Data shared

High:
● Code shared
● Data shared
● Environment shared
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